TUhjnbcbe - 2024/6/9 17:56:00
行业AI、产业AI、产业互联网,这些词在今天都已经变成了热门词汇。在流量红利差不多吃干净之后,科技企业需要向产业走,这是今天大部分科技公司的共识。然而产业市场不同于消费者市场的一个核心区别在于,每个行业之间实在是有太多不同。能源行业的要求跟教育行业的要求显然不一样,而一套智能技术解决方案打天下,显然也是不靠谱的。如果我们多留心产业AI的动向,就会发现从去年下半年开始,相关项目的PPT里正在越来越多提到行业专家、Know-How这样的字眼。在AI公司开始不断强调Know-How的重要性,呼唤拥有Know-How的公司参与到AI产业化进展中的时候,也许我们应该从头爬梳一下这个问题——行业专家到底如何与AI算法与算力的提供商合作,缺乏行业专家又给AI进入垂直行业带来了哪些阻碍?让我们来看看AI圈里大厂的梦中情人、创业公司的救命稻草,神秘的Know-How,到底是个什么情况。产业AI的无形之墙所谓Know-How,是指工匠时代那些师傅对徒弟口传心授的“行业秘诀”。到了机械大生产时代,Know-How虽然看似被信息爆炸冲刷地越来越透明。但在日益精细化的行业分割,以及众多产业各自攀爬科技树的大形势下,Know-How反而在经济实体中不断沉淀与积累。比如说,汽车、船舶就是坐拥大量Know-How节点的产业。即使在基础技术不难复制,行业供应链比较透明的情况下。汽车和船只的生产水准依旧难以复制,原因之一就在于其中的“秘密”太多了。Know-How可以被理解为一种能力、一种资源,也可以是被称作行业专家的人。在投资行业中,Know-How也被看作一个创业项目的评分标准之一——假如某汽车电商的创始人是浸淫汽车产业几十年的老油条,那么BP上往往会写着我们有Know-How。而在AI主导的数据与网络智能化技术,希望进入产业中时,Know-How恰好将变得极为重要。所谓行业AI或者产业AI,能够提高劳动生产率的本质原因之一,在于可以利用机器学习技术,实现数据分析与再挖掘,让AI将原本粗放生长的环节数据重新整合,重新求得一些产业效率的最优解。比如计算原料投入比例、仓储摆放规律、产业流程重塑等等。此外,AI的另一个功能是为产业端提供语音和视觉的能力,比如园区语音导览、基于机器视觉的质量检测等等。划个重点,这些AI能力需要从方方面面的复杂细节进入已有产业实体当中。但是到底如何进入,进入需要注意哪些难以预料的问题,何时能收回技术迭代成本——这些答案都掌握在Know-How手中。拿着算法和算力以及PPT的AI,在进入细分产业时,尤其是工业属性相对较强的产业,都难免遇到这种尴尬。AI虽然听上去靠谱,但没有“产业带路党”的帮助却寸步难行。更显著的问题来自于人才储备。一般来说,AI算法工程师注意研究深度学习的训练部署等相关内容。真实的逻辑,细节点的AI化方案,企业的性价比估算,产业智能化的弹性生长,这些都不在算法架构师或者AI开发者日常的考虑范围中。而产业专家则对产业周期了如指掌,却很难有经历和机会去学习和了解AI相关的内容。最终导致产业AI变成了各说各话,难以相互了解的两个邻居。而相比较而言,今天AI这端是相对透明的,真正的产业链合作压力,就来到了AI公司寻找产业Know-How这边。在我们了解到的很多实际AI产业融合案例中,会发现往往产业专家发现的问题,都不在AI以及数据智能技术的常规视野中。一个好问题的发现,往往预示着一个新产业空间的打开。归根结底,缺乏专业知识以及专业人才,正在成为限制AI落地产业市场的无形之墙。这个稀缺既不是技术问题也不是市场问题,但却实际制约着AI的脚步。Know-How如何工作理想情况下,机器学习等技术进入某家工厂、某个企业时,需要一名合格的Know-How或者Know-How公司来提供一下帮助。从而确保通用的AI技术与差异化的企业需求实现对接。1、寻找和控制AI工作中的行业差异化。机器学习的工作模式是提取抽象化特征并反向输送给机器,从而实现智能。但是到底提取什么特征,提取过程中有哪些问题,工作中又有哪些不合理性,这些都是AI开发者难以预料的。比如说著名的AI提升良品率问题,到底什么是良品,每个产业的定义都是不同的。这个定义,就是Know-How需要提供的差异化节点。2、关键训练数据。AI离不开数据,然而通用数据虽然多,方向却相对单薄,往往缺乏产业化的实际潜力。而不公开的行业价值数据在哪里呢?这也是Know-How型人才和公司的价值所在。3、成本与价值的理解。用AI总是听上去很好,但到底这个价值不菲的东西应该投入多少人力物力,什么时候收回成本,未来能创造多少价值,却都是极大取决于行业利润比的。为行业应用者估算整个投入产出周期,也就成为了Know-How的职责。4、产业链的理解。今天还有一种情况,就是自己的企业系统AI了,生产能力上去了,与供应商的连接能力反而减弱了。在复杂的产业链中,一家企业从管理系统、运维系统到生产系统的更新,都将影响并且受制于产业上下游关系。对这些关系的理解和预判,对于企业技术决策来说是至关重要的,而其把握能力也在Know-How手中。这样来看,好像Know-How有点像是AI与行业间的中介。很多时候我们都不想找中介,结果发现不找他们问题更多,效率更差。那么对于AI来说,到底谁是今天的Know-How呢?谁是AI需要的准Know-how?充当AI带路党的重任,显然是那些可以接触行业核心数据,并且理解行业技术体系、供需关系的人、部门与第三方企业。一般来说,有这样几种Know-How可以被AI公司利用,结成紧密的生态联盟,搭建AI进入产业的通道:1、企业的IT部门。一家非互联网领域企业的IT部门,经常看起来像是负责修网的。然而在长时间锤炼下,类似部门往往积累下了对行业需求的独特理解,并且积攒了大量可以被机器学习系统利用的关键数据。一家企业开始运用AI技术拓展生产系统,往往也会以IT部门为主导。2、技术业务骨干。很多实体经济与传统企业中,都有非常资深高水准的技术专业人才。他们不仅拥有着本行业的知识,事实上往往也对新技术抱有